
The barotropic vorticity equation

The barotropic vorticity equation describes the evolution of a homogeneous
(constant density), non-divergent, incompressible flow on the surface of the
sphere.

For a homogeneous fluid in the absence of any non-conservative forces
such as friction, Kelvin’s circulation theorem tells us that the circulation,
the line integral of the flow around any material loop, is conserved in time.
Using Stokes’ Theorem, one can translate this into the statement that the
surface integral over any surface bounded by this loop, of the component
of the vorticity normal to the surface, is conserved. For an infinitesimal
loop constrained to move on the surface of the sphere, with area δA, this
reduces to the conservation, following the flow, of ωδA, the radial component
of the vorticity times the area of the loop. If the flow is non-divergent,
δA is conserved, so the radial component of the vorticity is itself conserved
following the flow:

Dω

Dt
= 0, (1)

or
∂ω

∂t
= −v · ∇ω = −∇(vω) (2)

We can define a streamfunction ψ as the unique solution to Poisson’s equa-
tion, ∇2ψ = ζ, on the surface of the sphere. If the flow is nondivergent
along the surface, then the vorticity or the streamfunction define the flow
completely through v = k×∇ψ, where k is a unit vector in the radial di-
rection. Therefore, the vorticity equation provides a self-contained equation
of motion for this flow.

1 Spherical coordinates

Longitude λ ranges from 0 to 2π, and latitude θ from −π/2 at the South
Pole to π/2 at the North Pole. Let u be the zonal (eastward) velocity and v
be the northward velocity at constant radius. The divergence D and radial
component of the vorticity ω on the surface of a sphere of radius a take the
form

D ≡ 1

a cos(θ)

∂u

∂λ
+

1

a cos(θ)

∂

∂θ

(

v cos(θ)
)

(3)
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ω ≡ 1

a cos(θ)

∂v

∂λ
− 1

a cos(θ)

∂

∂θ

(

u cos(θ)
)

(4)

The relation between vorticity and streamfunction is

∇2ψ =
1

a2 cos2(θ)

∂2ψ

∂λ2
+

1

a2 cos(θ)

∂

∂θ

(

cos(θ)
∂ψ

∂θ

)

= ω (5)

and the flow field can then be reconstituted from ψ using

u = −1

a

∂ψ

∂θ
(6)

v =
1

a cos(θ)

∂ψ

∂λ
(7)

The material derivative for an incompressible flow can be written as

Dξ

Dt
=
∂ξ

∂t
+ v · ∇ξ =

∂ξ

∂t
+∇ · (vξ) =

∂ξ

∂t
+

u

a cos(θ)

∂ξ

∂λ
+
v

a

∂ξ

∂θ
(8)

or
Dξ

Dt
=
∂ξ

∂t
+ J(ψ, ξ) (9)

where the Jacobian, J , is defined as

J(A,B) =
1

a2 cos(θ)

(

∂A

∂λ

∂B

∂θ
− ∂B

∂λ

∂A

∂θ

)

(10)

If we view the flow from a rotating system with angular velocity Ω, and
interpret (u, v) as the flow as observed in this rotating frame, the only point
where the rotating frame is apparent is that the total (or absolute) vorticity
of the flow now consists of two parts, the vorticity of solid body rotation,
f ≡ 2Ω sin(θ), and the relative vorticity, the radial component of the curl
of (u, v): ω = f + ζ = f +∇2ψ. As f is independent of time, the material
derivative of the absolute vorticity is simply Dζ/Dt.

For the barotropic vorticity equation, we have

∂ζ

∂t
= −J(ψ, f + ζ) = −βv − J(ψ, ζ) = −2Ω

a2

∂ψ

∂λ
− J(ψ, ζ) (11)

where β ≡ 2Ω cos(θ)/a is the meridional gradient of f , and we are now using
the symbols u, v, and ψ for the flow in the rotating coordinate system.
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Since the integrals over the sphere of AJ(A, b) and BJ(A, b) vanish iden-
tically, the integrals over the sphere of ζ∂ζ/∂t and ψ∂ζ/∂t vanish identically
for this flow. The first of these is proportional to the rate of change of enstro-
phy, ζ2/2, and second to the rate of change of the kinetic energy (u2 + v2)/2
(as one can see by an integration by parts). Therefore, both kinetic energy
and enstrophy are conserved in time. All higher moments of vorticity are
conserved as well, but enstrophy conservation is of special importance in
that it is quadratic in the flow, and the existence of two quadratic invariants
constrains the flow in important ways.

Solutions of this equation are known to be well-posed, in that they do not
form a singularity in finite time if one starts with smooth initial conditions.
So if one had infinite resolution, there would be no need for dissipation.
But nonlinear, turbulent solutions in this two-dimensional geometry cascade
enstrophy to smaller and smaller scales. In a finite resolution model, the
enstrophy must be dissipated near the smallest resolved scales to simulate
the loss of this vorticity variance to still smaller scales. In spectral models,
one easily implemented solution is to add a hyperdiffusion of vorticity of the
form:

∂ζ

∂t
= −J(ψ, f + ζ)− ν(−1)n∇2nζ (12)

Hyperdiffusion of this sort is used because ordinary linear diffusion is often
too dissipative for many applications. However, one should keep in mind that
ordinary diffusion has no particular standing in this context either. We are
interested not in a truly two-dimensional fluid but in planetary scale flows
that are two-dimensional at large scales. There is a large spectral range,
within which these equations are not valid, connecting the large scales of
interest to the Kolmogorov microscale at which molecular diffusion would
come into play. In any case, there is no theory underlying hyperdiffusion,
and it is often criticized as ignoring the ”backscatter” from small to large
scales, etc.

An enstrophy cascade is characterized by a rate of transfer of enstrophy, ε,
down the spectrum from large to small scales. The units of ε are ζ2/T = T−3

where T is a time scale. So the strength of the cascade is simply characterized
by a time scale. (This is unlike three-dimensional turbulence in which the
time scale of the eddies decreases with the scale of the eddies.) Based on this
heuristic picture, as one varies the resolution one often modifies ν so as to
maintain the same damping time scale for the smallest resolved scale in the
model, but there is no guarantee that this is always the most appropriate
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way of changing the diffusion as the resolution of the model is altered.

2 Time differencing

The code uses a standard leapfrog scheme with a time filter to control time-
splitting. The time step is

ζi+1 − ζi−1

2∆t
= −J(ψi, f + ζi)− ν(−1)n∇2nζi+1 (13)

followed by the filter

ζi = (1− 2r)ζi + r(ζi+1 + ζi−1) (14)

where r is a small number. This is sometimes referred to as a Robert filter,
and sometimes as an Asselin filter. The damping is treated implicitly, indeed
it is fully backward, with the vorticity within the damping term evaluated at
ζi+1, so that it does not create artificial oscillations or growth. In the absence
of damping, and with r = 0, the quadratic conserved quantities are now the
integrals over the sphere of the staggered-in-time products ζi−1ζi and ψi−1ζi.

3 Spherical harmonic transform method

The equations are solved by writing the vorticity as a sum of spherical har-
monics:

ζ(θ, λ) =
∞
∑

`=0

∑̀

m=−`
ζlmY`m(λ, θ) =

∞
∑

`=0

∑̀

m=−`
ζlmP`m(sin(θ))eimλ (15)

Here m is the zonal, or azimuthal, wavenumber and ` is the total horizontal
wavenumber, in the sense that Y`m is an eigenfunction of the Laplacian on the
unit sphere with eigenvalue −`(`+ 1). The P`m are the associated Legendre
polynomials. If we define n ≡ ` − m, then n is the number of zero’s in
latitude, with even (odd) n resulting in a function that is even (odd) about
the equator. To insure that ζ is real, we require that ζ`−m = ζ∗`m, where the
asterisk denotes complex conjugation. We can also write the sum as

ζ(θ, λ) =
∞
∑

`=0

ζ`0P`0(sin(θ)) + 2
∞
∑

`=0

∑̀

m=1

P`m(sin(θ))<
(

ζ`me
imλ

)

(16)
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where < refers to the real part. Here and in the code the spherical harmonics
are normalized such that

1

2π

∫ π/2

−π/2
cos(θ)dθ

∫ 2π

0
dλY`m(λ, θ)Y ∗`′m′(λ, θ) = δmm′δ``′ (17)

Note that this implies that, for example, Y00 = 1/
√

2, that is, the spherical
harmonics are normalized so that their squared amplitude integrates to unity
over one hemisphere.

In a triangular truncation, the most popular, one truncates this spectrum
at some value of ` = L, and then retains all values of m for each ` in the
truncation. The truncation is rotationally symmetric, in the sense that if
one rotates a function that is expressible within this truncation, then the
rotated function remains within this truncation. (More generally, rotation
does not mix different `’s). Less often in recent years, one also sees rhomboidal
truncation, in which one retains the same number of meridional modes for
each zonal mode, or, equivalently, all modes with n = ` − m less than or
equal to some N . The term rhomboidal truncation is usually restricted to
the case in which N = M , so that the number of zonal model is equal to
the number of meridional modes, but other choices are occasionally made.
Rhomboidal truncation is not rotationally symmetric.

One can write equations for the time evolution of the spectral coefficients
in term of the spectral coefficients themselves. The nonlinear advection term
takes one outside of the truncation; one defines the spectral model by re-
taining only that part of the nonlinear term that projects onto the retained
truncation, a procedure that produces a truncated model that conserves en-
ergy and enstrophy. The expression for the advection term involves multiple
convolution summations, and, as a consequence, the resulting pure spectral
model is hopelessly inefficient for even modest truncations. The efficient use
of spectral representations in models such as this depends on the spectral
transform method in which one returns to physical space where needed, es-
pecially in order to perform multiplications. If one returns to physical space
at the appropriate resolution, choosing the de − aliasing grid appropriate
for one’s choice of truncation, one can reproduce the truncated pure spectral
model exactly, conserving energy and enstrophy as before.

The grid that one returns to is equally spaced in longitude but not equally
spaced in latitude; rather the meridional grid points are given by the Gaussian
latitudes, which are resolution dependent. The Gaussian grid is symmetric
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about the equator. For a discussion of Gaussian quadrature in the context
of spectral models, as well as de-aliasing grids, see

Durran, D. R., 1999: Numerical Methods for Wave Equations in Geo-
physical Fluid Dynamics, Springer Verlag, New York.

Consider a Fourier series in one dimension, truncated at wavenumber M .
If we evaluate this function at N equally spaced points, will we be able to
reconstruct the exact Fourier spectral representation with a discrete Fourier
transform? The answer is yes if N ≥ 2M + 1. One can remember this by
noting that a real field represented by a Fourier series truncated at m = M
has 2M + 1 real degrees of freedom (the m = 0 spectral amplitude is real,
while m = 1,M are complex) so one could not possibly go back and forth
with fewer grid points without losing information.

Now suppose that one takes two such truncated functions and multiplies
them together. Since this product contains wavenumbers that are twice as
large as the individual factors, one would need 4M + 1 grid points if one
wanted to move the product to grid space and then back to the spectral
domain retaining the exact expression for the product. Equivalently, this
number of grid points would allow one to move each component to the grid,
multiply them together on the grid, and then transform back to the spectral
domain, obtaining the exact answer. But in a spectral method for an equation
with a quadratic nonlinearity, this is more than one needs. One requires
only the projection of the product onto the original truncation (that is, the
first M wavenumbers). The exact computation of this component of the
product requires only 3M + 1 grid points. It is this grid that is referred to
as the de-aliasing grid for quadratic products. One can think in terms of the
quadrature that one must perform exactly to compute a spectral component
of some function f – one multiplies f by a trigonometric function within
one’s truncation and then integrates over the domain. In this case f is
a product containing wavenumbers up to 2M and the multiplier needed to
project out the required spectral component can range up to wavenumber M ,
so the integrand will have wavenumbers up to 3M . To evaluate this integral
exactly requires 3M + 1 points. (Admittedly, it is hard to understand the
”+1’s” in this casual way.)

Now define a field on the sphere with triangular truncation at wavenum-
ber M and ask the same questions. It turns out that to move this function to
a grid and back without loss of information requires at least 2M + 1 equally
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spaced points in longitude and a Gaussian grid with at least M + 1 points.
This is sometimes referred to as the linear grid. Note however, that one
cannot define an arbitrary function on this grid, move it to the spectral do-
main and then back to the grid, and retain the same grid values (unlike the
Fourier case). One can understand this by noting that the transform grid
is a latitude-longitude grid, with points along a latitude circle closer and
closer together as one approaches the pole. Clearly this grid is not spher-
ically isotropic, and an arbitrary function defined on this grid cannot be
represented by a triangularly truncated function, which can have no distin-
guished pole in the sense described earlier. If one makes the transformation
grid → spectral → grid1 → spectral → grid2 then grid2 = grid1, for then
grid1 has been filtered to contain only the harmonics within the truncation.

For a de-aliasing grid for quadratic products, one finds that the require-
ments are at least 3M + 1 longitudes and (3M + 1)/2 meridional Gaussian
latitudes. For rhomboidal truncation at zonal wavenumberM (withN = M),
the de-aliasing grid requires 3M + 1 longitudes and (5M + 1)/2 latitudes.

One can compute u and v from the vorticity in the spectral domain by
first computing the streamfunction (by simply dividing by the appropriate
eigenvalue of the Laplacian). Then v cos(θ) can be obtained immediately
since a zonal derivative consists of a simple multiplication by im in the spec-
tral domain. The meridional derivative needed to compute u can be obtained
with a recursion relation. More precisely, u`m cos(θ) is a linear combination
of ψ`+1,m and ψ`−1,m. The underlying recursion relation is

cos(θ)
dP`m
dθ

= −`ε`+1,mP`+1,m + (`+ 1)ε`,mP`−1,m (18)

where

ε`,m ≡
(

`2 −m2

4`2 − 1

)1/2

(19)

Starting with the spectral expansion of ψ, differentiating with respect to θ
and multiplying by cos(θ), using this recursion relation and then collecting
terms proportional to P`m, we find that

(cos(θ)u)`m = −1

a
(−(`− 1)ε`,mψ`−1,m + (`+ 2)ε`+1,mψ`+1,m) (20)

So as not to lose information when one computes this derivative, one must
retain one more meridional mode, for each m, in the truncation of u cos(θ)
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than for ζ or ψ. (In the code, for convenience, all spectral fields are dimen-
sioned so as to allow for this extra harmonic, with the understanding that
scalars such as ζ will not make use of the last meridional mode.)

One can also compute vorticity and divergence from u and v, but now the
recursion relation requires the spectral components of u/ cos(θ) and v/ cos(θ).
To see this, note that to compute ζ`m we have to compute an integral of the
form

∫

P`m
1

cos(θ)

∂

∂θ

(

u cos(θ)
)

cos(θ)dθ = −
∫

cos(θ)
∂P`m
∂θ

(

u

cos(θ)

)

cos(θ)dθ

(21)
One can then use the recursion relation (18) for cos(θ)∂P`m/∂θ to obtain
ζ`m from the spectral decomposition of u/ cos (and v/ cos). Starting with
vorticity and divergence (the latter equal to zero in this nondivergent model),
one can compute u cos(θ) and v cos(θ) in the spectral domain, move these to
the grid domain, divide by cos2(θ), then compute the spectral components
of vorticity and divergence, returning to exactly the same expressions as one
started with (as long as the grid is at least as large as the linear grid and as
long as one is careful to retain the additional meridional mode for u cos and
v cos, as well as u/ cos, v/ cos).

4 Algorithm

An outline of the steps involved in integrating the nondivergent barotropic
spectral model is as follows. Assume that we know both the spectral and
grid vorticity, and the grid values of u and v, at t−∆t and t. Then

1: Add the Coriolis force to the grid relative vorticity at time t

2: compute (f + ζ)u and (f + ζ)v on the grid at time t – think of ∂u/∂t =
(f + ζ)v and ∂v/∂t = −(f + ζ)u

3: compute the spectral divergence of ((f+ζ)u, (f+ζ)v), or, equivalently,
the spectral curl of ((f + ζ)v,−(f + ζ)u), to obtain the vorticity ten-
dency due to advection, Z, by first dividing these tendencies by cos(θ),
transforming to the spectral domain and using the recursion relation
mentioned in the previous paragraph.
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4: add the biharmonic damping to this advective tendency in the spectral
domain, treating the damping implicitly,

Z → Z − ν(2∆t)σnζ̃

1 + ν(2∆t)σn
(22)

where σ is the (absolute value of the) eigenvalue of the Laplacian for
each spherical harmonic,

5: use leapfrog to generate the spectral vorticity ζ(t+ ∆t) and apply the
Robert filter to modify the spectral vorticity at time t.

6: compute grid relative vorticity, as well as the spectral u cos and v cos
and then grid u and v, at t+ ∆t from the spectral vorticity.

Note that we do not bother to compute the new grid vorticity at time
t resulting from the Robert filter. This extra transforms does not seem
to be needed to maintain smooth temporal evolution in these barotropic
simulations, since the memory resides in the spectral domain.

There is an option of carrying a passive scalar tracer, using spectral ad-
vection, just as for the vorticity. For development purposes, there is also an
option of carrying along another passive tracer which is a grid-point vari-
able advected using a piecewise linear finite volume technique. (A piecewise
parabolic version is in the works, as is a version in which the vorticity itself
is advected with the finite volume scheme).

The finite volume advection scheme follows closely that described in

Lin, S.-J. and R. B. Rood, 1996: Multidimensional flux-form semi-Lagrangian
transport schemes. Monthly Weather Review, 124, pp. 2046-2069.

and is discussed further in the documentation for the module fv advection mod.
This scheme is not particularly suited for use in a leapfrog context. The pro-
cedure used here carries two time levels of information for the tracer ξ, just
as for vorticity. Using the velocities at time t, we call the finite volume ad-
vection algorithm to advect the scalar ξ from t−∆t to t+∆t; then we Robert
filter ξ. There is no explicit diffusion of tracer when using the finite-volume
scheme. The integrations are started with a simple forward step of length
∆t.
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5 Default example

By default the programs runs an example of the decay of a sinusoidal dis-
turbance to a zonally symmetric flow that resembles that found in the upper
troposphere in Northern winter. We start with the zonal flow

u = 25 cos(θ)− 30 cos3(θ) + 300 sin2(θ)cos6(θ) (23)

and modify the resulting vorticity field by adding a perturbation of the form

ζ ′ =
A

2
cos(θ)e−((θ−θ0)/θW )2

cos(mλ) (24)

The default choices of m = 4, θ0 = 45◦N , θW = 15◦, and A = 8.0 × 10−5

produce an interesting evolution art high resolution. (All units are MKS,
i.e., u is in m/s and ζ in 1/s). The radius of the sphere is set to the radius
of the Earth, as defined in constants mod. If the spectral or grid tracers, or
both, are turned on, they are, by default initialized to equal to +1 in the
zonal strip between 10◦N and 20◦N , and equal to −1 north of 70◦N .

This initial value problem has been studied in detail, in the linear limit,
(A→ 0), by

Held, I., 1985: Pseudomomentum and the orthogonality of modes in shear
flows. Journal of the Atmospheric Sciences, 42(21), 2280-2288.

and in the nonlinear case by

Held, I. M. and P. J. Phillips, 1987: Linear and nonlinear barotropic
decay on the sphere. Journal of the Atmospheric Sciences, 44(1), 200-207.

In choosing the resolution, the number of zonal grid points, num lon,
should be factorisable into powers of 2,3 and 5 so as to utilize the fast Fourier
transform.

To set the resolution, you need to define num lon, num lat, num fourier,
and num spherical. For the triangular model TM (i.e. T21 with M = 21)
with a de-aliasing grid, we always have num lon = 2(num lat), num fourier
= M , num spherical = M + 1, so we need only determine M and num lat
≡ NY . Popular choices include
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M NY factors

21 32 25

31 48 24 × 3
42 64 26

63 96 25 × 3
85 128 27

106 160 25 × 5
127 192 26 × 3
170 256 28

213 320 26 × 5
255 384 27 × 3
341 512 29

511 768 27 × 5
682 1024 210

1365 2048 211

The default for the diffusivity is ∇8 = (∇2)4 (damping order = 4 ), with
damping option = 1 and damping coeff = 1.e-04. With this damping option,
the value of damping coeff is the damping rate (in 1/s) for the highest merid-
ional mode with m = 0. For triangular truncation this is equivalent to setting
the damping rate for the largest value of ` within the truncation. If you in-
stead set damping option = 2, ν is simply set equal to the the input value of
damping coeff. (For higher resolutions with this test case, T341 and above,
it seems that the strength of the diffusivity needs to be increased for a stable
integration – 1.e-03 seems to be safe in all cases with ∇8.)

The time step also must be adjusted to the resolution. For T85, ∆t =
1800s is fine. Decreasing the time step proportionally should work as the
resolution is increased.

Since the initial condition is periodic in λ with wavenumber m in this
case, one can save computations by integration on a 360/m degree sector by
setting fourier inc = m and by dividing both num fourier and num lon by m,
taking care to retain an appropriate factorization for num lon. For example,
for m = 4 one can try fourier inc = 4, num fourier = 42, num spherical =
171, num lon = 128, num lat = 256.

The transforms module is currently restricted to 1D domain decompo-
sition, using latitude in the grid domain and fourier waves in the spectral
domain. Furthermore, it requires the same even number of latitudes on each
processor. So the number of processors must divide evenly into num lat/2.
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6 Structure of the code

There is a generic main program, in main.f90, that is used in a number of
idealized atmospheric models. Besides doing some bookkeeping, it includes
the main time loop and has a namelist in which the time step ∆t and the
length of the integration are provided.

The main program runs the model by calling the routines in atmosphere mod,
which, in turn, use routines in barotropic dynamics mod, barotropic physics mod,
barotropic diagnostics mod, and fv advection mod. barotropic physics does
nothing in the default version of the code. Model resolution, the spectral
damping, and the strength of the time filter, r, are controlled by a namelist
read by barotropic dynamics mod.

The dynamics module uses transforms mod, which contains a variety of
routines for transforming data from spherical harmonics to a grid and back,
computing derivatives in the spectral domain, etc.

Diagnostics are controlled by the diagnostics manager. Those immedi-
ately available are u, v, ζ, f + ζ, ψ, ξs, ξg where the latter two are the grid-
ded tracer fields generated, respectively, using spectral advection and finite-
volume advection. All fields are output into netcdf files, one per processor,
that can automatically be combined into full spatial fields using FMS’s mpp-
nccombine utility. The time interval at which output is generated, file names,
etc ate controlled from the diag table file read by the diagnostics manager. To
add additional diagnostic fields, follow the template in barotropic diagnostics mod.

Restart files are generated by atmos model mod and barotropic dynamics mod.
The former contains information about time, while the latter contains the
state of the model. If dir is the directory in which the code is being ex-
ecuted, restarts are placed in dir/RESTART (which must exist). If these
files are copied to dir/INPUT then the model will read them and continue
the integration smoothly if started up again. Namelists must also reside in
dir/INPUT.
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